














target mRNAs was significantly reduced compared with
control plants (P , 0.02 for all pairwise Student’s t test
comparisons; Fig. 4H) when the specific amiRNA was
expressed.

Direct Cloning of syn-tasiRNAs in
AtTAS1c-Based Constructs

A new generation of functional syn-tasiRNA vectors
based on a modified TAS1c gene was produced with the
potential to multiplex syn-tasiRNA sequences at DCL4-
processing positions 39D3[+] and 39D4[+] of the AtTAS1c
transcript (Montgomery et al., 2008b). The design of
AtTAS1c-based syn-tasiRNA constructs expressing two
syn-tasiRNAs is shown in Figure 6A.

syn-tasiRNA vector construction is similar to that de-
scribed for the amiRNA constructs (Fig. 6C). Briefly, two

overlapping and partially complementary oligonucleo-
tides containing syn-tasiRNA sequences are designed (for
details, see Fig. 6B; Supplemental Protocol S1). The se-
quence of syn-tasiRNA-1 can be identical to or different
from the sequence of syn-tasiRNA-2. Theoretically, more
than two syn-tasiRNA sequences can be introduced in the
modified AtTAS1c, with such design being more attrac-
tive if multiple and unrelated sequences have to be
targeted from the same syn-tasiRNA construct. The syn-
tasiRNA insert results from the annealing of two 46-nt-
long oligonucleotides and will have 59-ATTA and
59-GTTC overhangs. No PCR, restriction enzyme diges-
tion, or gel purification steps are required to obtain the
syn-tasiRNA insert. Several AtTAS1c-based cloning vec-
tors were developed and named AtTAS1c-B/c vectors
(from AtTAS1c-BsaI/ccdB; Table I; Supplemental Fig. S4).
These contain a truncated AtTAS1c sequence with the
39D3[+]-39D4[+] region replaced by the 1,461-bp ccdB

Figure 5. Mapping of amiRNA reads from AtMIR390a-based foldbacks expressed in Arabidopsis Col-0 T1 transgenic plants.
Analysis was performed for amiRNA and amiRNA* reads in plants expressing amiR-Ft (top left), amiR-Lfy (top right), amiR-Ch42
(bottom left), and amiR-Trich (bottom right). amiRNA guide and amiRNA* strands are highlighted in blue and green, respec-
tively. Nt from the AtMIR390a foldback are in black, except those that were modified to preserve authentic AtMIR390a foldback
secondary structure, which are in red. The proportion of small RNA reads is plotted as stacked bar graphs. Small RNAs are color
coded by size.
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Figure 6. Direct cloning of syn-tasiRNAs in vectors containing a modified version of AtTAS1c with a ccdB cassette flanked by
two BsaI sites (B/c vectors). A, Diagram of AtTAS1c-based syn-tasiRNA constructs. tasiRNA production is initiated by miR173-
guided cleavage of the AtTAS1c transcript. syn-tasiRNA-1 and syn-tasiRNA-2 are generated from positions 39D3[+] and 39D4[+]
of the AtTAS1c transcript, respectively. Nt of AtTAS1c, miR173, syn-tasiRNA-1, and syn-tasiRNA-2 are in black, orange, blue, and
green, respectively. B, Design of two overlapping oligonucleotides for syn-tasiRNA cloning. The sequences covered by the forward
and reverse oligonucleotides are represented with solid and dotted lines, respectively. C, Diagram of the steps for syn-tasiRNA
cloning in AtTAS1c-B/c vectors. The syn-tasiRNA insert obtained after annealing the two overlapping oligonucleotides has 59-ATTA
and 59-GTTC overhangs and is directly inserted into the BsaI-linearized AtTAS1c-B/c vector. Nt of the BsaI sites and arbitrary nt
used as spacers between the BsaI recognition site and the AtMIR390a sequence are in purple and light brown, respectively. Other
details are as in A.
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Figure 7. Functionality of AtTAS1c-based syn-tasiRNAs in Arabidopsis Col-0 T1 transgenic plants. A, Organization of syn-
tasiRNA constructs. The arrow indicates the miR173-guided cleavage site. tasiRNA positions 39D1[+] to 39D10[+] are indicated
by brackets, with positions 39D3[+] and 39D4[+] highlighted in black. B, Representative images of Arabidopsis Col-0 transgenic
lines expressing amiRNA or syn-tasiRNA constructs. C, Accumulation of amiRNAs and syn-tasiRNAs in Arabidopsis transgenic
plants. The graph at top shows mean (n = 3) relative Trich 21-mer (dark blue) and Ft 21-mer (light blue) levels + SD (35S:
AtMIR390a-Trich and 35S:AtMIR390a-Ft lanes = 1.0 for Trich 21-mer and Ft 21-mer, respectively). One blot from three
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cassette flanked by two BsaI sites in the orientation that
allows both BsaI recognition sites to be located outside of
the AtTAS1c sequence (Fig. 6C). Annealed oligonucleo-
tides are directly ligated into the linearized AtTAS1c-B/c
expression vector in a directional manner (Fig. 6C). Sub-
cloning is only required if the syn-tasiRNA insert is
inserted in the Gateway entry vector pENTR-AtTAS1c-B/c,
which allows recombination with the AtTAS1c-syn-
tasiRNA cassette to the Gateway expression vector of
choice (Table I; Supplemental Fig. S4). Compared with
other syn-tasiRNA cloning methods (de la Luz Gutiérrez-
Nava et al., 2008; Montgomery et al., 2008a; Felippes and
Weigel, 2009), this method is relatively fast, efficient, and
cost effective.

Functionality of AtTAS1c-Based syn-tasiRNAs
in Arabidopsis

To test the functionality of single and multiplexed
AtTAS1c-based syn-tasiRNAs and to compare the effi-
cacy of the syn-tasiRNAs with amiRNA, several syn-
tasiRNA constructs were generated and introduced into
Arabidopsis Col-0 plants (Fig. 7). These constructs
expressed either a syn-tasiRNA targeting FT (syn-tasiR-
Ft) and/or a syn-tasiRNA targeting TRY/CPC/ETC2 (syn-
tasiR-Trich) in single (35S:AtTAS1c-D3&D4Ft and 35S:
AtTAS1c-D3&D4Trich) or dual (35S:AtTAS1c-D3Trich-
D4Ft and 35S:AtTAS1c-D3Ft-D4Trich) configurations
(Fig. 7A; Supplemental Fig. S5; Supplemental Text S2).
For comparative purposes, transgenic lines expressing
35S:AtMIR390a-Ft and 35S:AtMIR390a-Trich, as well as
the 35S:GUS control construct, were generated in paral-
lel. The small RNAs produced in each pair of syn-
tasiRNA and amiRNA vectors were identical. Plant
phenotypes, syn-tasiRNA and amiRNA accumulation,
processing and phasing analyses of AtTAS1c-based syn-
tasiRNA, and target mRNA accumulation were analyzed
in Arabidopsis T1 transgenic lines (Fig. 7; Supplemental
Figs. S6–S9; Supplemental Table S2). Plant phenotypes
were also analyzed in T2 transgenic lines to confirm the
stability of expression (Supplemental Table S3).
Seventy-three percent and 62% of the transformants

expressing the dual-configuration syn-tasiRNA constructs
35S:AtTAS1c-D3Ft-D4Trich and 35S:AtTAS1c-D3Trich-
D4Ft, respectively, showed both Trich and Ft loss-
of-function phenotypes (Supplemental Table S2),
which were characterized by increased clustering of tri-
chomes in rosette leaves and a delay in flowering time

compared with the 35S:GUS transformants (Fig. 7B).
Plants expressing 35S:AtTAS1c-D3&D4Trich or 35S:
AtMIR390a-Trich constructs showed clear Trich pheno-
types in 82% or 92% of lines, respectively. In contrast
with amiR-Trich overexpressors, none of the syn-
tasiRNA-Trich constructs triggered the double try
cpc phenotype (Supplemental Table S2). Transform-
ants expressing the 35S:AtTAS1c-D3Ft-D4Trich and
35S:AtTAS1c-D3Trich-D4Ft constructs had significant
delays in flowering time compared with control lines
expressing the 35S:GUS, 35S:AtMIR390a-Trich, or 35S:
AtTAS1c-D3&D4Trich constructs (P , 0.01 for all pair-
wise Student’s t test comparisons), although the 35S:
AtMIR390a-Ft amiRNA lines showed the strongest delay
in flowering (P , 0.001, two-sample Student’s t test; Fig.
7B; Supplemental Fig. S6; Supplemental Table S2). The
trichome phenotypes were maintained in the Arabi-
dopsis T2 progeny expressing 35S:AtMIR390a-Trich,
35S:AtTAS1c-D3&D4-Trich, 35S:AtTAS1c-D3Trich-D4Ft,
and 35S:AtTAS1c-D3Ft-D4Trich constructs (Supplemental
Table S3).

Next, the accumulation of syn-tasiR-Trich and syn-
tasiR-Ft was compared with the accumulation of amiR-
Trich and amiR-Ft and analyzed by RNA-blot assays
using T1 transgenic plants showing obvious syn-tasiRNA-
or amiRNA-induced phenotypes (Fig. 7C). In all cases,
syn-tasiRNA accumulated to high levels and as a single
band at 21 nt (Fig. 7C), suggesting that the processing of
AtTAS1c-based constructs was accurate. When two copies
of either syn-tasiR-Ft or syn-tasiR-Trich were expressed
from a single construct, the corresponding RNAs accu-
mulated to higher levels compared with when they were
expressed in the dual syn-tasiRNA configuration con-
taining only single copies of each RNA (Fig. 7C). Inter-
estingly, amiR-Ft and amiR-Trich accumulated to higher
levels than did any of the corresponding syn-tasiRNAs
(Fig. 7C). It is possible that one or more factors in the
AtTAS1c-dependent tasiRNA-generating pathway is lim-
iting relative to the ubiquitous miRNA biogenesis factors.
It is also possible that RDR6-dependent TAS1c dsRNAs
may be processed by DCL4 from both ends, resulting in
the production of tasiRNAs in two registers (Rajeswaran
et al., 2012) and limiting the accumulation of accurately
processed syn-tasiRNAs from positions D3[+] and D4[+].

To further analyze the processing and phasing of
AtTAS1c-based syn-tasiRNA expressed from the dual-
configuration constructs (35S:AtTAS1c-D3Trich-D4Ft
and 35S:AtTAS1c-D3Ft-D4Trich), small RNA libraries
were produced and analyzed. Analysis of 35S:AtTAS1c-

Figure 7. (Continued.)
biological replicates is shown. Each biological replicate is a pool of at least six independent plants. The U6 RNA blot is shown
as a loading control. D, syn-tasiRNA processing and phasing analyses in Arabidopsis Col-0 transgenic lines expressing
syn-tasiRNAs (35S:AtTAS1c-D3Trich-D4Ft and 35S:AtTAS1c-D3Ft-D4Trich). Analyses of syn-tasiR-Trich, syn-tasiR-Ft, and
AtTAS1c-derived siRNA sequences by high-throughput sequencing are shown. Pie charts show percentages of 19- to 24-nt
reads; radar plots show percentages of 21-nt reads corresponding to each of the 21 registers from AtTAS1c transcripts, with
position 1 designated as immediately after the miR173-guided cleavage site. E, Mean relative levels + SE of FT, TRY, CPC, and
ETC2 mRNAs after normalization to ACT2, CPB20, SAND, and UBQ10, as determined by RT-qPCR (35S:GUS = 1.0).
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D3Trich-D4Ft small RNA libraries confirmed that the
syn-tasiRNA transcript yielded predominantly 21-nt
syn-tasiR-Trich and syn-tasiR-Ft (51% and 67% of the
reads within 64 nt of 39D3[+] and 39D4[+], respec-
tively) and that the corresponding tasiRNAs were in
phase with the miR173 cleavage site (Fig. 7D, top;
Supplemental Fig. S7, A and B, left). Similarly, 35S:
AtTAS1c-D3Ft-D4Trich libraries revealed a high pro-
portion of 21-nt syn-tasiR-Ft and syn-tasiR-Trich (45%
and 65% of the reads within 64 nt of 39D3[+] and 39D4
[+], respectively) and accurately phased tasiRNAs (Fig.
7D, bottom; Supplemental Fig. S7, A and B, right). In
both 35S:AtTAS1c-D3Trich-D4Ft and 35S:AtTAS1c-
D3Ft-D4Trich libraries, relatively low levels of incor-
rectly processed siRNAs that overlap with the D3[+]
and D4[+] positions were detected (Supplemental Fig.
S7). While these small RNAs differ from the correctly
processed forms by only one or a few terminal nt, it is
theoretically possible that these could have altered
targeting properties. Additionally, analyses of endog-
enous small RNAs showed that the expression of the
syn-tasiRNA constructs, relative to the expression of
the 35S:GUS control construct, did not interfere with
the processing or accumulation of authentic AtTAS1c
tasiRNAs (Supplemental Figs. S8 and S9).

Finally, the accumulation of target mRNAs in the 35S:
AtTAS1c-D3Trich-D4Ft and 35S:AtTAS1c-D3Ft-D4Trich
transgenic lines was analyzed by quantitative RT-PCR
assay (Fig. 7E). The expression of all four target mRNAs
(FT, TRY, CPC, and ETC2) was significantly reduced in
lines expressing both dual-configuration syn-tasiRNA
constructs compared with control plants expressing the
35S:GUS construct (P , 0.02 for all pairwise Student’s
t test comparisons; Fig. 7E). However, target mRNA ex-
pression was reduced more in lines expressing the single-
configuration syn-tasiRNA constructs and decreased
even more in lines expressing the corresponding amiRNA
(Fig. 7E). Taken together with the results presented above,
the extent of target mRNA knockdown and the resultant
phenotypes correlates with amiRNA and syn-tasiRNA
dosage.

syn-tasiRNA technology was used before to repress
single targets in Arabidopsis (de la Luz Gutiérrez-Nava
et al., 2008; Montgomery et al., 2008a, 2008b; Felippes and
Weigel, 2009). Here, a single AtTAS1c-based construct
expressing multiple distinct syn-tasiRNAs triggered the
silencing of multiple target transcripts and the resultant
knockdown phenotypes. Theoretically, AtTAS1c-based
vectors could be designed to produce more than two syn-
tasiRNAs to repress a larger number of unrelated targets.
Therefore, the syn-tasiRNA approach may be preferred
for applications involving specific knockdown of multiple
targets.

MATERIALS AND METHODS

Plant Materials and Growth Conditions

Arabidopsis (Arabidopsis thaliana) Col-0 and Nicotiana benthamiana plants
were grown in a chamber under long-day conditions (16-h-light/8-h-dark

photoperiod at 200 mmol m22 s21) and 22°C constant temperature. Plants
were transformed using the floral dip method with Agrobacterium tumefaciens
GV3101 strain (Clough and Bent, 1998). Transgenic plants were grown on
plates containing Murashige and Skoog medium and BASTA (50 mg mL21) or
hygromycin (50 mg mL21) for 10 d before being transferred to soil. Plant
photographs were taken with a Canon Rebel XT/EOS 350D digital camera
and EF-S18-55mm f/3.5-5.6 II or EF-100mm f/2.8 Macro USM lenses.

DNA Constructs

The cassette containing the AtMIR390a sequence lacking the distal stem loop
region, and including two BsaI sites, was generated as follows. A first round of
PCR was done to amplify AtMIR390a-59 or AtMIR390a-39 regions using primers
AtMIR390a-F and BsaI-AtMIR390a-59-R or BsaI-AtMIR390a-39-F and AtMIR390a-R,
respectively. A second round of PCR was done using as template a mixture of the
products of the first PCR round and primers AtMIR390a-F and AtMIR390a-R.
The PCR product was cloned into pENTR-D-TOPO (Life Technologies) to
generate pENTR-AtMIR390a-BsaI. A similar strategy was used to generate
pENTR-AtTAS1c-BsaI containing the AtTAS1c cassette for syn-tasiRNA cloning:
oligonucleotide pairs AtTAS1c-F/BsaI-AtTAS1c-59-R and BsaI-AtTAS1c-
39-F/AtTAS1c-R were used for the first round of PCR, and oligonucleotide
pair AtTAS1c-F/AtTAS1c-R was used for the second PCR.

A 23 35S promoter cassette including the Gateway attR sites of pMDC32
(Curtis and Grossniklaus, 2003) was transferred into pMDC123 (Curtis and
Grossniklaus, 2003) to make pMDC123S. An undesired BsaI site contained in
pMDC32, pMDC123S, and pFK210 (de Felippes and Weigel, 2010) was disrupted
to generate pMDC32B, pMDC123SB, and pFK210B, respectively. pMDC32B-
AtMIR390a-BsaI, pMDC123SB-AtMIR390BsaI, and pFK210B-AtMIR390a-BsaI
intermediate plasmids were obtained by LR recombination using pENTR-
AtMIR390a-BsaI as the donor plasmid and pMDC32B, pMDC123SB, and
pFK210B as destination vectors, respectively. Similarly, pMDC32B-AtTAS1c-BsaI
and pMDC123SB-AtTAS1c-BsaI intermediate plasmids were obtained by LR
recombination using pENTR-AtTAS1c-BsaI as the donor plasmid and pMDC32B
and pMDC123SB as destination vectors, respectively.

To generate zero background cloning vectors, a ccdB cassette was inserted
between the BsaI sites of plasmids containing the AtMIR390a-BsaI or AtTAS1c-BsaI
cassettes. ccdB cassettes flanked with BsaI sites and with AtMIR390a- or AtTAS1c-
specific sequences were amplified from pFK210 using primers AtMIR390a-B/c-F
and AtMIR390a-B/c-R or AtTAS1c-B/c-F and AtTAS1c-Bc-R, respectively, with an
overlapping PCR to disrupt an undesired BsaI site from the original ccdB sequence.
These modified ccdB cassettes were then inserted between the BsaI sites into
pENTR-AtMIR390a-BsaI, pENTR-AtTAS1c-BsaI, pMDC32B-AtMIR390a-BsaI, pMDC32B-
AtTAS1c-BsaI, pMDC123SB-AtMIR390-BsaI, pMDC123SB-AtTAS1c-BsaI, and pFK210B-
AtMIR390-BsaI to generate pENTR-AtMIR390a-B/c, pENTR-AtTAS1c-B/c,
pMDC32B-AtMIR390a-B/c, pMDC32B-AtTAS1c-B/c, pMDC123SB-AtMIR390a-B/c,
pMDC123SB-AtTAS1c-B/c, and pFK210B-AtMIR390a-B/c, respectively.

AtMIR319a-based amiRNA constructs (pMDC32-AtMIR319a-amiR-1, pMDC32-
AtMIR319a-amiR-2, pMDC32-AtMIR319a-amiR-3, pMDC32-AtMIR319a-21-amiR-4,
pMDC32-AtMIR319a-21-amiR-5, and pMDC32-AtMIR319-21-amiR-6) were
generated as described previously (Schwab et al., 2006) using the WMD3 tool
(http://wmd3.weigelworld.org). The CACC sequence was added to the 59
end of the PCR fragments for pENTR-D-TOPO cloning (Life Technologies) and
to allow LR recombination to pMDC32B or pMDC123SB. amiR-1, amiR-2, and amiR-3
were inserted in the AtMIR319a foldback, while amiR-4, amiR-5, and amiR-6
were inserted in the AtMIR319a-21 foldback.

The rest of the amiRNA and syn-tasiRNA constructs (pMDC32B-AtMIR390a-
amiR-1, pMDC32B-AtMIR390a-amiR-2, pMDC32B-AtMIR390a-amiR-3, pMDC32B-
AtMIR390a-21-amiR-4, pMDC32B-AtMIR390a-21-amiR-5, pMDC32B-AtMIR390a-amiR-6,
pMDC32B-AtMIR390a-Ft, pMDC32B-AtMIR390a-Lfy, pMDC32B-AtMIR390a-
Ch42, pMDC32B-AtMIR390a-Trich, pMDC32B-AtTAS1c-D3&D4Ft, pMDC32B-AtTAS1c-
D3&D4Trich, pMDC32B-AtTAS1c-D3Trich-D4Ft, and pMDC32B-AtTAS1c-D3Ft-
D4Trich) were obtained as described in the next section. The pMDC32-GUS
construct was described previously (Montgomery et al., 2008a).

All oligonucleotides used for generating the constructs described above are listed
in Supplemental Table S4. The sequences and predicted targets for all the amiRNAs
and syn-tasiRNAs used in this study are listed in Supplemental Table S5. The
sequences of the amiRNA and syn-tasiRNA vectors are listed in Supplemental Text
S3. The following amiRNA and syn-tasiRNA vectors are available from Addgene
at http://www.addgene.org/: pENTR-AtMIR390a-B/c (Addgene plasmid 51778),
pMDC32B-AtMIR390a-B/c (Addgene plasmid 51776), pMDC123SB-AtMIR390a-B/c
(Addgene plasmid 51775), pFK210B-AtMIR390a-B/c (Addgene plasmid 51777),
pENTR-AtTAS1c-B/c (Addgene plasmid 51774), pMDC32B-AtTAS1c-B/c (Addgene
plasmid 51773), and pMDC123SB-AtTAS1c-B/c (Addgene plasmid 51772).
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amiRNA and syn-tasiRNA Oligonucleotide Design
and Cloning

Detailed amiRNA and syn-tasiRNA oligonucleotide design and cloning pro-
tocols are given in Figures 2 and 6 and in Supplemental Protocol S1. A Web tool to
design amiRNA and syn-tasiRNA sequences, together with the corresponding
oligonucleotides for cloning into B/c vectors, will be available at http://p-sams.
carringtonlab.org. All oligonucleotides used in this study for cloning amiRNA and
syn-tasiRNA sequences are listed in Supplemental Table S4.

For cloning amiRNA or syn-tasiRNA inserts into B/c vectors, 2 mL of each
of the two overlapping oligonucleotides (100 mM stock) were annealed in 46 mL
of Oligo Annealing buffer (60 mM Tris-HCl, pH 7.5, 500 mM NaCl, 60 mM MgCl2,
and 10 mM dithiothreitol) by heating the reaction for 5 min at 94°C and then
cooling to 20°C (0.05°C s21 decrease). The annealed oligonucleotides were diluted
in deionized water to a final concentration of 0.3 mM.

A 10-mL digestion-ligation reaction was incubated for 5 min at 37°C, and
included 1 mL of the annealed and diluted oligonucleotides (0.3 mM), 50 ng of
the corresponding B/c vector, 1 mL of 103 T4 DNA ligase buffer (New
England Biolabs), 1 mL of T4 DNA ligase (400 units mL21; New England
Biolabs), and 1 mL of BsaI (10 units mL21; New England Biolabs). Alternatively,
BsaI digestion of the B/c vector and subsequent ligation of the amiRNA oli-
gonucleotide insert can be done in separate reactions. In this case, a 20-mL
ligation reaction was incubated for 1 h at room temperature and included 1 mL
of the annealed and diluted oligonucleotides (0.3 mM) and 1 mL (75 ng mL21) of
the corresponding B/c vector previously digested with BsaI. In all cases, 1 to
2 mL of the ligation reaction was used to transform an Escherichia coli strain
such as DH10B or TOP10 lacking ccdB resistance.

Transient Expression Assays

Transient expression assays in N. benthamiana leaves were done as de-
scribed (Carbonell et al., 2012) using A. tumefaciens GV3101 strain.

RNA-Blot Assays

Total RNA from Arabidopsis or N. benthamiana was extracted using TRIzol
reagent (Life Technologies) as described (Cuperus et al., 2010). RNA-blot
assays were done as described (Montgomery et al., 2008b; Cuperus et al.,
2010). Oligonucleotides used as probes for small RNA blots are listed in
Supplemental Table S4.

Real-Time RT-qPCR

Real-time RT-qPCR was done using the RNA samples that were used for
RNA-blot and small RNA library analyses. Two micrograms of DNaseI-
treated total RNA was used to produce first-strand complementary DNA
using the SuperScript III system (Life Technologies). RT-qPCR was done on
optical 96-well plates in the StepOnePlus Real-Time PCR System (Applied
Biosystems) using the following program: 20 s at 95°C, followed by 40 cycles
of 95°C for 3 s and 60°C for 30 s, with an additional melt curve stage con-
sisting of 15 s at 95°C, 1 min at 60°C, and 15 s at 95°C. The 20-mL reaction
mixture contained 10 mL of 23 Fast SYBR Green Master Mix (Applied
Biosystems), 2 mL of diluted complementary DNA (1:5), and 300 nM of
each gene-specific primer. Primers used for RT-qPCR are listed in
Supplemental Table S4. Target mRNA expression levels were calculated
relative to four Arabidopsis reference genes (ACT2, CBP20, SAND, and
UBQ10) using the delta delta cycle threshold comparative method
(Applied Biosystems) of the StepOne Software (version 2.2.2; Applied
Biosystems). Three independent biological replicates were analyzed. For
each biological replicate, two technical replicates were analyzed by RT-qPCR
analysis.

Preparation of Small RNA Libraries

Small RNA libraries were produced using the same RNA samples as used
for RNA blots. Fifty to 100 mg of Arabidopsis total RNA was treated as de-
scribed (Carbonell et al., 2012), but each small RNA library was barcoded at
the amplicon PCR step using an indexed 39 PCR primer (i1, i3, i4, i5, or i9) and
the standard 59 PCR primer (P5; Supplemental Table S6). Libraries were
multiplexed and submitted for sequencing using the HiSEquation 2000 se-
quencer (Illumina).

Small RNA Sequencing Analysis

Sequencing reads were parsed to identify library-specific barcodes and
remove the 39 adaptor sequence and were collapsed to a unique set with read
counts. Unique sequences were aligned to a database containing the sequences
of AtMIR390a-based amiRNA, AtTAS1c-based syn-tasiRNA, and the control
constructs using BOWTIE version 0.12.8 (Langmead et al., 2009) with settings
that identified only perfect matches (-f -v 0 -a -S). Small RNA alignments were
saved in Sequence Alignment/Map format and were queried using SAMtools
version 0.1.19+ (Li et al., 2009). Processing of amiRNA foldbacks and syn-
tasiRNA transcripts was assessed by quantifying the proportion of small RNA,
by position and size, that mapped within 64 nt of the 59 end of the miRNA and
miRNA* or DCL4 processing positions 39D3[+] and 39D4[+], respectively.

The syn-tasiRNA constructs differ from endogenous AtTAS1c at positions
39D3 and 39D4 but are otherwise the same. Therefore, reads for other syn-
tasiRNA positions are indistinguishable from endogenous AtTAS1c-derived
small RNAs. To assess the phasing of syn-tasiRNA constructs, small RNA
reads from libraries generated from plants containing 35S:GUS, 35S:AtTAS1c-
D3Trich-D4Ft, or 35S:AtTAS1c-D3Ft-D4Trich were first normalized to account
for library size differences (reads per million total sample reads). Next, nor-
malized reads for 21-nt small RNAs that mapped to AtTAS1c in the 35S:GUS
plants were subtracted from the corresponding small RNA reads in plants
containing syn-tasiRNA constructs to correct for endogenous background
tasiRNA expression. Phasing register tables were constructed by calculating
the proportion of reads in each register relative to the miR173 cleavage site for
all 21-nt positions downstream of the cleavage site.

A summary of high-throughput small RNA sequencing libraries from
Arabidopsis transgenic lines is provided in Supplemental Table S6.

Arabidopsis gene and locus identifiers are as follows: ACT2 (AT3G18780),
CBP20 (AT5G44200), CH42 (AT4G18480), CPC (AT2G46410), ETC2
(AT2G30420), LFY (AT5G61850), FT (AT1G65480), SAND (AT2G28390), TRY
(AT5G53200) and UBQ10 (AT4G05320). The miRBase (http://mirbase.org)
locus identifiers of the conserved Arabidopsis MIRNA precursors (Fig. 1C)
and of the plant MIRNA precursors used to express amiRNAs (Fig. 1D) are
listed in Supplemental Tables S7 and S8, respectively. High-throughput se-
quencing data from this article can be found in the Sequence Read Archive
(http://www.ncbi.nlm.nih.gov/sra) under accession number SRP036134.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. AtMIR390a-B/c vectors for direct cloning of
amiRNAs.

Supplemental Figure S2. Diagrams of AtMIR319a, AtMIR319a-21, and
AtMIR390a foldbacks used to express several amiRNAs in N. benthamiana.

Supplemental Figure S3. Base pairing of amiRNAs and target mRNAs.

Supplemental Figure S4. AtTAS1c-B/c vectors for direct cloning of syn-
tasiRNAs.

Supplemental Figure S5. Organization of syn-tasiRNA constructs.

Supplemental Figure S6. Flowering time analysis of Arabidopsis Col-0 T1
transgenic plants expressing amiRNAs or syn-tasiRNAs.

Supplemental Figure S7. Processing analyses of syn-tasiRNAs expressed
in Arabidopsis Col-0 T1 transgenic lines (35S:AtTAS1c-D3Trich-D4Ft and
35S:AtTAS1c-D3Ft-D4Trich).

Supplemental Figure S8. Processing and phasing analyses of endogenous
AtTAS1c-tasiRNA in Arabidopsis Col-0 T1 transgenic lines expressing
syn-tasiRNAs (35S:AtTAS1c-D3Trich-D4Ft, 35S:AtTAS1c-D3Ft-D4Trich,
and 35S:GUS control).

Supplemental Figure S9. Processing analyses of endogenous AtTAS1c-derived
siRNAs in Arabidopsis Col-0 T1 transgenic plants expressing syn-tasiRNAs
(35S:AtTAS1c-D3Trich-D4Ft, 35S:AtTAS1c-D3Ft-D4Trich, and 35S:GUS control).

Supplemental Table S1. Phenotypic penetrance of amiRNAs expressed in
Arabidopsis Col-0 T1 transgenic plants.

Supplemental Table S2. Phenotypic penetrance of amiRNAs or syn-tasiRNAs
expressed in Arabidopsis Col-0 T1 transgenic plants.
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Supplemental Table S3. Phenotypic penetrance of amiRNAs or syn-tasiRNAs
expressed in Arabidopsis Col-0 T2 transgenic plants.

Supplemental Table S4. DNA oligonucleotides used in this study.

Supplemental Table S5. Sequences and predicted targets for all the amiRNAs
and syn-tasiRNAs used in this study.

Supplemental Table S6. Summary of high-throughput small RNA librar-
ies from Arabidopsis transgenic lines.

Supplemental Table S7. miRBase locus identifiers of the Arabidopsis con-
served MIRNA precursors used in this study.

Supplemental Table S8. miRBase locus identifiers of those plant MIRNA
precursors used previously for expressing amiRNAs.

Supplemental Protocol S1. Protocol to design and clone amiRNAs or
syn-tasiRNAs in BsaI/ccdB-based vectors containing the AtMIR390a or
AtTAS1c precursors, respectively.

Supplemental Text S1. DNA sequences in FASTA format of all MIRNA
foldbacks used in this study to express and analyze amiRNAs.

Supplemental Text S2. DNA sequences in FASTA format of all AtTAS1c-
based constructs used to express and analyze syn-tasiRNAs.

Supplemental Text S3. DNA sequences of BsaI-ccdB-based vectors used for
direct cloning of amiRNAs or syn-tasiRNAs.
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