






reversed (39 and 61%, respectively). The size selection exerted by
AGO1 from N. benthamiana on vd-sRNAs (see above) was not
significantly influenced by their polarity.

An enrichment/depletion analysis of vd-sRNA reads in the IP
versus the input showed significant enrichment in the IPs of plus
and minus vd-sRNAs of 21 and 22 nt (but not of 24 nt) with a
5=-terminal U (but not with the other three 5=-terminal nucleo-
tides) (Fig. 7). Therefore, regarding binding specificity for vd-
sRNAs, AGO1 from N. benthamiana behaved similarly to its agro-
expressed homologue from A. thaliana.

Finally, the profile of vd-sRNAs loaded by AGO1 from N. ben-
thamiana presented a specific hot spot distribution along the vi-
roid genome (Fig. 7 and 8), thus recapitulating the situation pre-
viously observed with the agroexpressed AGOs from A. thaliana.
However, the vd-sRNA profiles corresponding to the agroinfil-

trated AGO1 from A. thaliana and the endogenous AGO1 from N.
benthamiana differed, most likely because of the different experi-
mental conditions: in the first instance, the AGO1 from A. thali-
ana was overexpressed, while in the second instance, the accumu-
lation of the endogenous AGO1 was considerably lower and
possibly subjected to developmental regulation.

DISCUSSION

Our first immunoprecipitation assays, using PSTVd-infected
leaves of N. benthamiana and a polyclonal antibody specific for its
endogenous AGO1, showed that the protein indeed preferentially
binds vd-sRNAs with the expected size (21 or 22 nt). However,
PSTVd infection of N. benthamiana did not significantly affect the
accumulation of either endogenous AGO1 or miR168 (which reg-
ulates AGO1 mRNA expression), as opposed to the situation ob-
served in the same host following infection by different RNA vi-
ruses (42, 60). Considering that in the latter case the specific
induction of miR168 is promoted by virus-encoded protein sup-
pressors of RNA silencing and that PSTVd is a non-protein-cod-
ing RNA, this result is not surprising. Moreover, it does not favor
the idea that vd-sRNAs, as proposed previously for transgene
siRNAs and endogenous siRNAs and miRNAs (68), could com-
pete to bind to AGO1 and lead to a reduction in AGO1-miR168
complexes and an increase in AGO1 mRNA translation. However,
recent data indicate that infection by citrus exocortis viroid, a
close relative of PSTVd, induces the accumulation of other en-
zymes mediating RNA-silencing steps in tomato (69). Whether
this accumulation is a direct or indirect effect, and what is the
nature of the underlying mechanism, remains unknown.

Previous reports indicated that viroids are significantly resis-
tant to RISC-mediated degradation (47, 70, 71), suggesting that
they may have evolved their secondary structures as a response
against this selection pressure. In such a scenario, the compact
secondary structure of PSTVd plus strands may hinder their tar-
geting (and inactivation) by AGO proteins loaded with vd-sRNAs,
while targeting PSTVd minus strands is even more difficult, be-
cause they mostly form part of double-stranded replicative com-
plexes (8). From an alternative perspective, the secondary struc-
ture of viroids could have emerged as a compromise between
resistance to DCL and to RISC, which act preferentially against
RNAs with compact and relaxed conformations, respectively (48).
Indeed, data obtained in other experimental contexts indicate that
viroids are RISC sensitive (46, 48, 49, 52), and recent results show
that RISC promotes cleavage of viral RNAs with a packed second-
ary structure—resembling that of viroids— by targeting bulged
regions within the structure (72). However, the evidence that one
or more AGOs are loaded with vd-sRNAs and function in antivi-
roid RISC is circumstantial, with no data providing direct support
for this view.

The finding in tissues infected by typical members of both vi-
roid families of vd-sRNAs with the characteristic features of DCL
products (see above) does not necessarily entail their loading in
one or more AGO proteins. Previous data from a study with an
RNA virus have shown that the bulk of virus-derived sRNAs in
latently infected Drosophila cells are not loaded into any AGO
member, suggesting that dicing of viral dsRNAs by itself plays a
key function in maintaining the latent state (73). Although dicing
of the snap-folded genomic viroid ssRNA (or, more likely, of its
dsRNA replication intermediates) could play a role in containing
infection below a threshold value, extension of the “dicing-only”

FIG 6 Agroexpression of AGO1, AGO2, AGO4, and AGO5, but not of AGO7
or of GUS, attenuates viroid accumulation. (A and B) Northern blot hybrid-
izations with a full-length radiolabeled riboprobe for detecting PSTVd plus
strands of total RNAs from halos of mock- and PSTVd-inoculated N. bentha-
miana agroinfiltrated with cultures of A. tumefaciens with binary plasmids for
expressing HA-tagged AGO1 (A, lanes 1, 4, and 5), AGO2 (A, lanes 6 and 7),
AGO4 (B, lanes 1, 4, 5, and 6), AGO5 (B, lanes 7, 8, and 9), AGO7 (A, lanes 8
and 9, and B, lanes 10 and 11), and GUS (A and B, lanes 2 and 3). Mock
inoculations were performed as indicated in the legend to Fig. 3. Total RNAs,
extracted 2 days after agroinfiltration, were separated by denaturing PAGE in
5% gels, and equal loading was assessed by the intensity of tRNA after staining
with ethidium bromide. Western blot analyses of total proteins from halos
were carried out with the anti-HA monoclonal antibody following protein
separation by PAGE in 4 to 12% gels; equal loading was assessed by the inten-
sity of the large subunit of RubisCO after staining with Ponceau S. In all cases,
samples were processed 2 days after agroinfiltration of plants that were PSTVd
infected, or mock inoculated, 8 days before.
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model to PSTVd does not seem justified. In support of this view,
when 9 of the 10 AGOs from A. thaliana were agroexpressed in
PSTVd-infected leaves of N. benthamiana, all except AGO6,
AGO7, and AGO10 bound vd-sRNAs: AGO1, AGO2, and AGO3
bound those of 21 and 22 nt, while AGO4, AGO5, and AGO9
additionally bound those of 24 nt. Deep sequencing showed that,
when agroexpressed in PSTVd-infected N. benthamiana leaves,
AGO1, AGO2, AGO4, and AGO5 bound the vd-sRNAs, particu-
larly those of 21 and 22 nt, primarily according to their 5=-termi-
nal nucleotides, as reported previously for endogenous and viral
sRNAs (34, 35, 63). Moreover, the ratio of vd-sRNA to total

sRNAs in the AGO-IPs was higher than that in the inputs, indicat-
ing that vd-sRNAs were loaded into these AGO proteins with
some preference. Therefore, DCLs could function as the first de-
fensive barrier against viroid infection and, additionally, provide
vd-sRNAs for priming the second RISC-based defensive barrier.

Viroids, lacking protein-coding ability, also might have evolved
a sort of RNA-mediated decoy mechanism protecting them
against RNA silencing, similar to that developed by alphaviruses,
like Semliki Forest virus (SFV), which do not encode RNA-silenc-
ing suppressors. More specifically, alphaviruses have been pro-
posed to produce decoy virus-derived sRNAs to hamper the RNA-

FIG 7 Analysis of vd-sRNAs in the IP versus the input generated by a polyclonal antibody against AGO1 from N. benthamiana reveals a clear enrichment in the
IP of plus (A) and minus (B) vd-sRNAs of 21 and 22 nt (but not 24 nt) with a 5=-terminal U. IP enrichment or depletion was determined for each unique 21-, 22-,
or 24-nt vd-sRNA as log2 [(IP reads � 1)/(input reads � 1)] and plotted for each size class as the fraction (%) of unique vd-sRNA sequences enriched �2-fold
(log2 �1) or depleted �2-fold (log2 � 1) in the IP compared.
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silencing machinery and to provide the virus time for replication
before being eventually silenced (74). In consonance with this
view, the predominant virus sRNAs derived from hot spots are less
effective at silencing SFV accumulation than those derived from
cold spots (74). Regarding viroids, infections by PSTVd and the
chloroplast-replicating peach latent mosaic viroid (PLMVd) (75)
are accompanied by large amounts of vd-sRNAs (references 44
and 45 and this work). Moreover, the experimental evidence avail-
able supports the idea that vd-sRNAs mapping at cold spots are
biologically active. Specifically, variants of PLMVd inducing se-
vere albinism have a particular hairpin insertion of 12 to 14 nt (76,
77), and two low-abundance minus vd-sRNAs containing this in-
sertion target for cleavage—as predicted by RNA silencing—the
peach mRNA coding for cHSP90 involved in plastid-to-nucleus
signal transduction (51). The two vd-sRNAs are 21 nt, fulfill the
criteria for being functional sRNAs (78, 79), and have a 5=-termi-
nal U, indicating that they are most likely loaded in AGO1; these
criteria are also met by a 22-nt RNA that contains the region re-
sponsible for the yellow phenotype incited by the Y satellite RNA
of CMV and directs cleavage, via RNA silencing, of the mRNA of
a gene involved in chlorophyll biosynthesis (80, 81). A similar
mechanism has been proposed for the phenotypes induced by
artificial miRNAs (amiRNAs) derived from the virulence-modu-
lating region of PSTVd (82), although the evidence is indirect and
the amiRNAs do not fulfill all the above-mentioned criteria. The
finding that host mRNAs are targeted by AGOs loaded with
sRNAs derived from viroids and satellite RNAs supports the no-
tion that these subviral replicons, like RNA viruses, are also targets
of RISC.

Previously, hypomorphic ago1 mutants have been tested
against virus infection, with their hypersensitive reaction and
overaccumulation of viral RNA being interpreted as a confirma-
tion of the involvement of RNA silencing, and particularly of
AGO1, in antiviral defense (31). Here, we have taken the opposite
approach: to overexpress certain AGO proteins and examine
whether they result in viroid underaccumulation. Specifically, the
synchronized overexpression of AGO1, AGO2, AGO4, and AGO5

in leaves of N. benthamiana at early stages of PSTVd infection has
facilitated the observation of the attenuating effects of these pro-
teins on the viroid titer. These results, together with the specific
loading of vd-sRNAs with the expected size and 5=-terminal nu-
cleotide by agroinfiltrated AGO1, AGO2, AGO4, and AGO5 from
A. thaliana, as well as by the endogenous AGO1 of N. benthami-
ana, are consistent with the view that those members of the AGO
family may play a role in anti-PSTVd defense.
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